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Abstract: We propose a novel algorithm to determine the Euclidean shortest path (ESP) from a given
point (source) to another point (destination) inside a tubular space. The method is based on the
observation data of a virtual particle (VP) assumed to move along this path. In the first step, the
geometric properties of the shortest path inside the considered space are presented and proven.
Utilizing these properties, the desired ESP can be segmented into three partitions depending on the
visibility of the VP. Our algorithm will check which partition the VP belongs to and calculate the
correct direction of its movement, and thus the shortest path will be traced. The proposed method is
then compared to Dijkstra’s algorithm, considering different types of tubular spaces. In all cases, the
solution provided by the proposed algorithm is smoother, shorter, and has a higher accuracy with a
faster calculation speed than that obtained by Dijkstra’s method.

Keywords: Euclidean shortest path; tubular space; reactive algorithm; visibility; oriented drilling
process; Dijkstra’s algorithm

1. Introduction

Finding the shortest path in the presence of obstacles, referred to as the Euclidean
shortest path problem, is one of the fundamental problems in path planning [1]. This
problem arises in many industrial applications. The idea of using a flying robot such as an
unmanned aerial vehicle (UAV) to navigate through a tunnel-like environment can be found
in the inspection of dam penstocks [2–4], chimneys [5], ventilation systems [6], onshore
oil and gas industry [7], narrow sewers [8], and other hazardous deep tunnels [9,10]. In
addition, many marine applications also require navigating through underwater tunnel-
like environments with autonomous underwater vehicles (AUVs). These include, for
instance, the inspection of different kinds of underwater structures such as offshore oil
platforms [11], flooded spring tunnels [12,13], water delivery tunnels [14], etc. In these
applications, shortest path planning that minimizes the total distance travelled by the
vehicles plays an important role in optimizing the energy consumption, thus extending the
operation time without recharging their batteries [15,16]. It may also reduce the travelling
time and will be very useful for search and rescue missions during disaster events in
underground tunnels [6,17].

Another example of the studied problem is to determine the location of a non-elastic
chord between two points within a tube. Indeed, this problem can be found in controlling
the deformation of slender tube-like robots actuated with at least one internal tendon [18,19].
Calculating the tendon load effect on the tube wall requires determining the tendon location.
As it is only attached at the tip, pre-positioned at the base, and the rest freely locates inside
the innermost tube, its location results in the shortest path connecting two points at the
base and at the tip.
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1.1. Related Works

In general 3D space, the problem of finding the ESP between two given points that
does not intersect with any given obstacles is known to be NP-hard [20]: special cases of
this problem have been studied as follows. The authors in [21] gave a polynomial time
algorithm to calculate ESP for cases in which the number of obstacles is ‘small’ and all of
them are convex. Another algorithm was proposed in [22] with the assumption that all
obstacles are vertical buildings with k different heights. More recently, Ref. [23] presented
algorithms for solving approximate ESPs amid convex obstacles. Other approximation
algorithms for ESP calculations are detailed in [24]. These studies share common features
in that a collection of finite obstacles are given as forbidden zones in space and the ESP will
be found in the space surrounding these obstacles.

In the studied problem, the obstacle is the entire space outside the tube and the ESP
must pass through the inner zone of the tubular space. A similar problem can be found
in [25] that computes the minimal path in tubular space. The minimal path is typically
solved based on the Fast Marching Method (FMM) which only considers grid nodes as
the possible vertices of the minimal paths. However, the paths detected by the FMM have
been proven to be not always the exact ESPs [1]. Several approximation algorithms also
exist for finding the ESP between two points in 3D space bounded by a closed surface
such as cube-curves [26] or a simple polyhedron [27] using the rubberband algorithm. This
method is suitable for solving various ESPs in 3D space. Even so, there is a non-trivial gap
in the geometric shape between the cube-curve and the tubular space. Polyhedron seems
like a better choice to represent a tubular space. However, the characteristic geometrical
properties of tubular spaces should be considered for a dedicated algorithm.

The study of a tubular surface with Bishop frame was proposed in [28]. The au-
thors provided some characterizations about the special curves lying on this surface (e.g.,
geodesic and asymptotic curves). However, the problem studied herein requires consid-
ering the interior space instead of just the boundary surface. In addition, the geometrical
properties of the ESP inside the tubular space also need to be investigated. The authors
in [29] described a simple geometric structure of ESPs where they consist of curved paths
on the obstacles connected by straight line segments (see Theorem 1). In this work, we
develop the geometric structure of ESPs presented in [29] by considering the characteristic
properties of tubular spaces.

In practice, the navigation problem can be classified into planning-based and reactive
algorithms [30]. Planning-based approaches require a global map representation of the
environment (e.g., a graph or a network) before searching. Prior knowledge of the tubular
space enables the generation of a weighted graph where the weight of each edge (or
arc for the directed graph) is associated with its length [24]. Numerous algorithms are
used for the shortest path calculation in graph theory (see Chapters 24 and 25 in [31]). A
well-known graph-based algorithm among them is Dijkstra’s algorithm [32] in which the
shortest path connects vertices in the graph. Unlike the planning-based approaches, a
reactive method allows directly generating motion decisions during the movement based
on observed data [30]. The reactive shortest path navigation was presented in [33] for an
in-plane problem. Such a problem was also found in 3D space where the obtained path
is interpolated with a spline curve [34]. In this work, we propose an algorithm based on
the observed information of a virtual particle that can be used as a reactive method for the
shortest path navigation inside the tubular space.

1.2. Contributions

In this paper, we propose a novel algorithm to find the shortest path within a tubular
space that connects two points at the tube ends. Our contributions include: (1) the descrip-
tion of the ESP geometrical structure inside tubular spaces with mathematical proof; (2) the
proposition of a novel algorithm for finding the shortest path in tubular spaces based on
the observed data; and (3) the numerical validation and comparison results with Dijkstra’s
algorithm by considering various types of tubular spaces. As a result, the solution obtained
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by using the proposed algorithm is shorter, smoother and faster than that provided by
Dijkstra’s method.

The remainder of this paper is organized as follows. Section 2 formulates the problem.
The basics of Dijkstra’s algorithm are described in Section 3. Then, we present the proposed
algorithm in Section 4. Our computational results are provided in Section 5. After that,
Section 6 includes some brief discussions. Section 7 concludes the paper.

2. ESP in Tubular Space
2.1. Problem Description

Euclidean geometry is the geometry in daily life [1] where the distance between two
points ppp = (xp, yp, zp)T and qqq = (xq, yq, zq)T in 3D space is defined as follows:

de(ppp, qqq) =
√
(xp − xq)2 + (yp − yq)2 + (zp − zq)2 (1)

From the discrete point of view, a path (α) from the source PPP to the destination QQQ is a
finite sequence of nodes xxxi, starting at PPP and ending at QQQ. We obtain the length of the path
as in Equation (2):

L(α) =
n−1

∑
i=0

de(xixixi, xi+1xi+1xi+1), xxx0 =PPP, xxxn =QQQ (2)

Then, the ESP is the path connecting PPP and QQQ, which has the minimum length and
has to be through a given tubular space. The mathematical definition of tubular space is
given as follows [35]:

Definition 1. Let ccc(s) : I → R3 be a smooth, regular space curve. A tubular surface ∂Ω associated
to ccc(s), of radius ρ, is, by definition, the envelope of the family of spheres of radius ρ, with the center
on the curve.

Definition 2. The storage space of the tube Ω is the 3D space enclosed by the lateral wall (∂Ω) and
the two ending cross-sections of the tube.

In Definition 1, s is the arc length parameter of the centerline curve. In this work,
we consider the tubular surface ∂Ω to be regular (Figure 1). The condition underlying
the regularity of a tube is given in detail in [28]. By κ(s), we denote the curvature of
the centerline curve ccc(s). In order to avoid singularities as well as self-overlapping, the
following condition is required:

κ(s) < ρ−1, ∀s ∈ [0, L] (3)

where L is the length of ccc(s).

Self-overlapping tubeRegular tube

Self-overlapping

Figure 1. The regular and self-overlapping tube. The regular tube ensures the correctness of the
directed graph in the following section.
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2.2. Directed Graph

We discretize Ω into a series of meshed circular disks corresponding to the cross-
sections perpendicular to ccc(s). By S0, . . . , SN+1, we denote the meshed circular disks where
S0 contains the starting point (source) PPP and SN+1 includes the destination QQQ. The distance
between two consecutive disks along the centerline curve is h = L

N+1 . As the shortest
path from the source to the destination must obviously pass through each cross-section
at only one point, we have the weighted directed graph G(V, A), as shown in Figure 2.
This directed graph is defined by a finite set V of vertices and a set A of arcs between those
vertices [1]. All vertices of the graph (except PPP and QQQ) are located at the nodes of the
meshed disks S1, . . . , SN . We define two vertices as adjacent if they are connected by one
arc. Then, every two adjacent nodes in the graph are located on two consecutive disks. The
source PPP is connected with all nodes of disk S1. Each node of disk Si is connected by one
arc to every node of disk Si+1 for all i ∈ {1, . . . , N − 1}. Eventually, every node of disk SN
is directly connected to the destination QQQ.

S0

S2

S3

...

Sn-2

Sn-1
Sn

Sn+1

...

...

S1 MESHED
CIRCULAR
DISK

TENDON

BASE

TIP

SOURCE

DESTINATION

S1 S2 SN-1 SN

... ... ... ...

Figure 2. Discrete approach for the ESP problem. (Left) Inner space of the tube transformed into a
series of meshed circular disks; and (Right) the directed graph.

3. Basics of Dijkstra’s Algorithm

The concept of this method, based on the lemma about the relationship between
the global minimum and local minimum, was first presented by E.W. Dijkstra in 1959
(see [32], Problem 2). Despite also being based on Lemma 1, if applied to the directed graph,
Algorithm 1 has a run time in O(|A|) instead of O(|V|log|V|+ |A|), as is the case for the
conventional Dijkstra’s algorithm used for a weighted graph [1]. In the literature, the A∗

algorithm [36] is a good method for searching the shortest path in a weighted graph as it
improves the calculation speed of Dijkstra’s algorithm for many cases. However, choosing
an effective admissible heuristic function for this algorithm based on the geometry of
the tubular space is beyond the scope of this paper. In addition, the complexity O(|A|)
is already a good run time for this problem, so we do not consider the A∗ algorithm in
this work.

Lemma 1 (Dijkstra algorithm, 1959). “If rrr is a node on the minimal path from ppp to qqq, the
knowledge of the latter implies the knowledge of the minimal path from ppp to rrr”.

This lemma can easily be proven by contradiction. The shortest path from the sourcePPP
to the destination QQQ will be traced by extending all extendable paths by one edge to a node
not yet visited on this path until QQQ is reached. Consequently, extending all the extendable
paths from the source by one arc in the directed graph starts to turn the examined disk
into its adjacent disk towards the destination. Upon examining a disk, the shortest path
between the source and every node on the previous disks has been identified, so we do not
need to revisit these points.

Set rrr[i][j](i ∈ {1, . . . , N}, j ∈ {1, . . . , M}) as the node jth on the meshed disk Si. In
addition, we denote D(xxx) as the minimum length from node PPP to node xxx, w(xxx, yyy) as the
length of the arc connecting two adjacent nodes xxx and yyy, and L[i][j] as the list of nodes
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on the shortest path from source PPP to node rrr[i][j] (for node QQQ, we utilize L[QQQ]). We obtain
Dijkstra’s algorithm applied for this ESP problem as given in Algorithm 1.

Algorithm 1: Dijkstra’s algorithm.
Input: PPP,QQQ, and rrr[i][j], ∀i ∈ {1, . . . , N}, ∀j ∈ {1, . . . , M}.
Output: L[QQQ].
// Initialisation

1 D(QQQ)← +∞, D(rrr[i][j])← +∞, ∀i ∈ {1, . . . , N}, ∀j ∈ {1, . . . , M};
// From the source to S1

2 for j← 1 to M do
3 D(rrr[1][j])← w(PPP, rrr[1][j]);
4 L[1][j] ← {PPP, rrr[1][j]};
5 end
// Between S1 and SN

6 for i = 2 to N do
7 for j = 1 to M do
8 for k = 1 to M do
9 D(rrr[i][j])← min{D(rrr[i][j]), D(rrr[i−1][k]) + w(rrr[i−1][k], rrr[i][j])}

10 If D(rrr[i][j]) is replaced, put a label K∗ ← k.
11 end

12 L[i][j] ←
[
L[i−1][K∗ ], rrr[i][j]

]
; // add rrr[i][j] to the list L[i−1][K∗ ]

13 end
14 end

// From SN to the destination
15 for k = 1 to M do
16 D(QQQ)← min{D(QQQ), D(rrr[N][k]) + w(rrr[N][k],QQQ)}.
17 If D(QQQ) is replaced, put a label K∗ ← k.
18 end
19 return L[QQQ] ← [L[N][K∗ ], QQQ]

During the operation, all currently visited nodes always belong to the same cross-
section. Thus, all possible paths will reach the destination at the same time. When the
destination is reached, there will no longer be extendable paths in the directed graph and
we can point out the shortest path. For that reason, the algorithm becomes a breadth-first
search algorithm [1]. Thus, the time complexity of Algorithm 1 is O(|A|) with |A| as the
number of arcs in the directed graph. As a conventional method, the solution by Dijkstra’s
algorithm is given as a series of vertices of the graph G. Then, the obtained solution path
is generally a polyline. To increase the accuracy of the result as well as make it smoother,
the mesh of the discretized cross-section must be finer. However, increasing the number
of nodes on the mesh results in significantly slowing down the calculation speed. We
then proposed a new method that takes advantage of the geometrical properties of tubular
spaces to improve the searching solution.

4. The ESP Searching Algorithm Based on Visibility

The algorithm we propose hereafter is based on a visible tube portion that can be
“seen” by the VP moving along the shortest path it is searching. The ESP will be gradually
established determining the correct moving direction of the particle from the source PPP to
the destination QQQ. For convenience, we firstly define some concepts used in this section.
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4.1. Geometric Properties of the ESP in Tubular Space

Definition 3. For every point XXX ∈ Si ⊂ Ω, i 6= N + 1, the cross-section Si divides Ω into two
sub-spaces, and a direction from XXX is said to be positive (+) if it is towards the sub-space containing
the destination.

According to Definition 3, any point in Ω (not belonging to SN+1) will have an infinite
number of positive directions (see Figure 3). Obviously, during the movement, the correct
direction of the particle is always a positive direction.

positive direction line of sight longest length
of sight

A

B

C

D

X

Figure 3. (Left) The dashed red rays describe the positive directions. (Right) AAA can see BBB and DDD
because the line segments ABABAB and ADADAD are totally contained by Ω. Furthermore, by this definition, AAA
cannot see CCC. The green and blue dashed lines terminating at the boundary ∂Ω illustrate the line of
sights. Among them, the blue one is the longest length of sight, an important concept used in the
following method.

Definition 4. Two points XXX, YYY ∈ Ω are said to see each other if the line segment joining them XYXYXY
is totally contained by Ω.

Definition 5. A cross-section S ⊂ Ω is visible from a point XXX ∈ Ω if there exists a point YYY ∈ S
that can be seen by XXX.

Lemma 2. If a point XXX inside the tube can see a cross-section S of the tube, the area part in S that
can be seen by XXX must be a convex set (as illustrated in Figure 4).

Not continuousUnique and
continuous

Not unique

Figure 4. The visible area of a cross-section Si is described by the yellow zone(s) which must be
unique and continuous.

The proof of this lemma is detailed in Appendix A.1.

Definition 6. From a point XXX ∈ Ω, the “length of sight” corresponding to a positive direction
is the distance between XXX and the farthest point in ∂Ω that can be seen by XXX along the positive
direction. The line segment corresponding to this length is called the line of sight.

We then have the geometric structure of the shortest path between two points (which
are not in each other’s line of sight) in a tubular space.

Theorem 1. By fff , we denote the shortest path between two arbitrary points XXX and YYY inside the
tubular space Ω. If XXX cannot see YYY, then there exist curved parts of fff lying on the inner lateral
wall of the tube ∂Ω. Outside these parts, fff consists of a union of straight line segments which are
tangent to the boundary surface ∂Ω.
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Theorem 2. The curved parts of fff are geodesic paths on ∂Ω. Moreover, they are on the surface of
the negative curvature.

Proof. The proof of Theorem 1 was presented in [29]. To prove Theorem 2, we employed
Lemma 1. As the curved parts of fff are also the shortest paths connecting their ends, they
must be geodesic paths on the boundary surface ∂Ω [37]. Moreover, if a curved path of
fff exists that is outside the surface of the negative curvature, we always find on this path
two neighboring points that can see each other (see Figure 5). As the straight line segment
joining these points is shorter than the geodesic path between them, then fff is not the
shortest one connecting XXX and YYY. This contradicts the definition of fff (Q.E.D.).

These two theorems lead us to two important corollaries.

A B

Negative curvature

Positive curvature

Zero curvature

A B

Figure 5. Curved segments lying on surfaces of positive and zero curvatures where A and B can see
each other.

Corollary 1. Let XXX be a point on the ESP ppp(s) that can see a point YYY so that the ray XYXYXY is not the
direction ṗpp(sX) of the ESP at XXX. Let (α) be an arbitrary plane containing XYXYXY. If the angle between
ṗpp(sX) and (α) is not zero, then the direction ṗpp(s) at any point on the ESP segment between the
cross-sections containing XXX and YYY will always point away from (α).

Proof. From XXX, the particle moves away from (α) (the angle between ṗpp(sX) and (α) is not
zero). Using Theorem 1, we obtain that the particle only changes its direction at points
on the geodesic paths. As these curves must be on the surface of negative curvature
(Theorem 2), where vector p̈pp(s) points out of the tube, thus the ṗpp(s) will always point away
from the plane (α) (see Figure 6).

Corollary 2. If XXX on the ESP can see a cross-section S of the tubular space Ω via a positive
direction, the correct direction at XXX (ṗpp(sX)) must be towards a point YYY in the visible area of S by XXX.

Proof. The above corollary can be proven by contradiction. By σX(S), we denote the visible
area of the cross-section S by XXX. Let YYY be the intersection of the straight line containing
ṗpp(sX) and the plane containing S (denoted by β(S)). We need to prove that YYY ∈ σX(S). We
consider the following hypothesis of contradiction:

i f YYY 6∈ σX(S)⇒ XYXYXY 6⊂ Ω (4)

In other words, the ray XYXYXY passes through the boundary ∂Ω. Let MMM be the passing
point that is closest to XXX. In β(S) and through YYY, we draw an arbitrary straight line that
intersects with the visible area σX(S). Let WWW be the intersection point that is closest to YYY.
Then, WWW must be on the boundary of σX(S) (denoted by ∂σX(S)). In addition, there is a
total of two relative positions of WWW: WWW ∈ ∂Ω and WWW 6∈ ∂Ω (see Figure 7). In the following,
we define a plane (α) and a closed surface (C) for these two mentioned cases:

• (WWW 6∈ ∂Ω). (α) is the plane that contains XWXWXW and the tangent at WWW of σX(S). If XWXWXW
is not tangent to ∂Ω, we can always find in β(S) a circle with center WWW and radius ε
small enough so that the entire circle can be seen by XXX (as there is no obstacle between
XXX and this circle). Then, there exist points outside σX(S) (which is part of the circle)
that can be seen by XXX. This contradicts the definition of σX(S). Thus, XWXWXW is tangent to
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∂Ω. Let TTT be the tangent point that is closest to XXX and PT(∂Ω) be the tangent plane
of ∂Ω at TTT. If PT(∂Ω) 6≡ (α), PT(∂Ω) will divide σX(S) into two subsets. However,
as the line of sight of a visible point in σX(S) must pass through the cross-section of
the tube at TTT, only then can one subset of σX(S) be observed by XXX. This contradicts
the definition of σX(S). Thus, PT(∂Ω) ≡ (α). We can then define a closed surface (C)
enclosed by (α), the cross-section at XXX, and part of ∂Ω which contains MMM (see Figure 7
Left).

• (WWW ∈ ∂Ω). (α) is the plane that contains XWXWXW and the tangent at WWW of S. Then, (C) is
the closed surface containing MMM and enclosed by ∂Ω, (α), and the cross-section of the
tube at XXX (see Figure 7 Right).

By using the definition of (C), we can deduce from XXX that the VP will go into the inner
space of (C). Since the destination Q is outside (C), the particle must pass the boundary
of (C) somewhere on (α). However, by applying Corollary 1, the direction vector ṗpp(s)
will always point away from (α), thus the particle cannot return to (α) for a passing point.
Therefore, the hypothesis (4) cannot be true, then YYY ∈ σX(S) (Q.E.D.).

S

p(s)

(α)

p(s) geodesic segmentX
Y

(α) S

Figure 6. (Left) Tube portion between the cross-sections containing XXX and YYY which can see each other.
(α) is an arbitrary plane containing XYXYXY but not containing ṗ̇ṗp(sX). The ESP ppp(s) only changes its
direction ṗpp(s) on its geodesic segment(s). S is an arbitrary cross-section of the tube where the geodesic
segment crosses. (Right) On the projection view plane that is perpendicular to (α) ((α) degenerates
to a straight line), as p̈̈p̈p(s) points outside the envelope of S, it also points away from (α). As ṗpp(sX)

points away from (α), by mathematical induction, ṗpp(s) will point away from (α), ∀s ∈ [sX , sY ].

X

Y

W
T

β(S)
σ (S)
X

M
X

Y

W

β(S)

σ (S)
X

M

(α)

(C)

(C)

(α)

Figure 7. Point XXX can see cross-section S. YYY is the intersection of the direction of the ESP ṗ̇ṗp(SX) and
the plane containing S. In β(S) and through YYY, we draw an arbitrary straight line that intersects the
visible area σX(S). Let WWW be the intersection point that is closest to YYY. (Left) WWW is in the inner zone of
S; (Right) WWW is on the boundary of S.

Employing the above lemma, theorems and corollaries lead us to an important result
regarding the partitions of the ESP inside a tubular space, as shown in Remark 1.

Remark 1. For any type of tubular space, the shortest path ppp(s) can be segmented into three partitions:

• Partition 1 (P1) : Includes points that can see the destination QQQ. The direction ṗpp(s) at any
point in this partition is always towards QQQ.
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• Partition 2 (P2) : Includes points that can see the ending cross-section Send, but cannot see QQQ.
The direction ṗpp(s) at any point XXX in this partition is always towards a visible point YYY in the
ending cross-section such that the angle between XYXYXY and XXXQQQ is the smallest one.

• Partition 3 (P3) : Includes points that cannot see the ending cross-section Send. The direction
of ṗpp(s) at any point in this partition is the positive direction corresponding to the longest
length of sight.

The three partitions of the searching shortest path inside the tube are described in
Figure 8. The proof of this remark is given in Appendix A.2. It is important to note that
a tube does not necessarily contain all three partitions. For instance, a straight tube only
contains partition 1 regardless of the positions of the source and the destination.

θ

A

B

C

Partition 3

Partition 2

Partition 1

Source

Base

Tip
Destination

Figure 8. Three partitions of the shortest path correspond to three sections of the tube. At AAA belonging
to P3, the VP cannot see the ending cross-section Send. The correct direction corresponds to the longest
length of sight. At BBB belonging to P2, Send can see been, but not QQQ. The correct direction is towards
the visible point YYY in Send so that the angle θ between BYBYBY and BQBQBQ is the smallest one. At CCC in P1, the
particle can see QQQ. The correct direction is towards QQQ.

4.2. The Proposed Algorithm

The principle of this method is based on Remark 1. Ensuring that two points can see
each other in the discrete approach is equivalent to proving that the line segment joining
those points must cross all the meshed circular disks between them. In the Algorithm 2,
we use CCCi to denote the intersection point between the searching shortest path and the
cross-section Si, i ∈ {0, . . . , N + 1}. The objective of Algorithm 2 is then equivalent to
finding the series of CCCi. It is important to note that CCCi is not necessarily a node of G(V, A).
Indeed, the algorithm determines the correct direction of CCCi−1, thereby determining the
position of CCCi as the intersection point between this direction and the next cross-section Si.
The correct direction of CCCi−1 was found using Remark 1 by checking which partition CCCi−1
belongs to (with precedence from P1 to P3). The value 1 of f lag marks that CCCi−1 can see
the ending cross-section SN+1. The Oriented Drilling Process is an algorithm employed
for Partition 3, which returns to the next value of the CCCi series by the intersection point
between the longest-length-of-sight direction and the next cross-section.
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Algorithm 2: Proposed method.
Input: PPP,QQQ, and rrr[i][j], ∀i ∈ {1, . . . , N}, ∀j ∈ {1, . . . , M}.
Output: CCCi, ∀i ∈ {0, . . . , N + 1}.
// Initialisation

1 CCC0 ←PPP, CCCN+1 ←QQQ, CCCi ← ∅, ∀i ∈ {1, . . . , N};
2 f lag← 0 ; // Marking if the CCCi−1 can see SN+1 or not
// Loop Process

3 for i← 1 to N + 1 do
4 if CCCi−1 can see CCCN+1 then

// CCCi−1 is belong to Partition 1

5 CCCk ← CCCi−1CCCN+1 ∩ Sk, ∀k ∈ {i, . . . , N};
6 f lag← 1;
7 break;
8 else
9 θ ← +∞ ; // Angle between the correct direction and

−−−−→
CCCi−1.QQQ

10 for j← 1 to M do
11 CCCdistal ← rrr[N+1][j] ; // Temporary examined vertex of SN+1

12 if CCCi−1 can see CCCDistal then
13 f lag← 1 ; // CCCi−1 is belong to Partition 2

14 CCCtemp ← CCCi−1CCCdistal ∩ Si ; // Possible value for Ci

15 θtemp = Angle
(−−−−−−−→

CCCi−1.CCCdistal ,
−−−−→
CCCi−1.QQQ

)
; // Possible value for θ

16 if θ > θtemp then
17 θ ← θtemp;
18 CCCi ← CCCtemp;
19 end
20 end
21 end
22 if f lag = 0 then

// CCCi−1 is belong to Partition 3
23 Ci = Oriented Drilling Process(Ci−1);
24 end
25 end
26 end

4.3. Oriented Drilling Process

To effectively determine the longest length of sight from an arbitrary point XXX inside
the tube, we employ Lemma 2. The operation scheme of finding the longest-length-of-sight
direction illustrated in Figure 9 comprises a series of expanding and deepening processes.
Without loss of generality, we assume that CCCi−1 can see a point TTT in a forward section Sj.
By employing Lemma 2, we discretely expand the examined direction from the direction
passing through TTT to others passing through its nearby nodes on the same mesh Sj until
discovering a point TTTnew in a farther disk Sk (k > j). As a deepening process, we then
update TTT by TTTnew and also the examined cross-section Sj by Sk. The operation is then
repeated until the expanding process is over. The condition to stop the expanding process
is when the boundary of the visited area in Sj just comprises the invisible nodes and the
boundary points of Sj. Finally, we compare the length of sight corresponding to all visible
points in the farthest visible cross-section and find the longest one. The next correct point
CCCi is the intersection point between this line of sight and the next cross-section Si.

One advantage of this method is the fact it represents a significant improvement in
computation time as we do not need to visit all the nodes of the graph. For the expanding
process, on the examined disk Sj, we just need to expand the investigated nodes until
the current exact point CCCi−1 can see farther; then we jump further into the more in-depth
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cross-section. Otherwise, if there is no new disk observed by CCCi−1, we stop the process and
indicate the next correct point of the ESP CCCi. Moreover, as this is an inheritable algorithm, in
the next searching process, we can directly use the previous correct direction as the initial
examined orientation. Thus, we skip the disks that were examined in the previous loop.
For several circumstances such as points on the straight-line segments of the shortest path
(the ESP consists of straight-line and geodesic curve segments, see Theorems 1 and 2), the
next searching process can stop right after choosing this initial examined orientation. That
is also the reason why we call this method Oriented Drilling. Imagine that every time we
find the correct direction for point CCCi−1 such as when we drill a hole in that direction. For
the next searching process, as there was already a hole, the searching is simplified. The
whole process becomes an adjustment the direction of the drill so that it can drill deeper.
Consequently, the drilling direction will be oriented closer and closer to the deepest drill
hole (the longest length of sight).

STOP

1Ci-1

T

2 3

456

Ci-1

newT

Ci-1

Ci-1Ci-1

T

Ci

longest-length-of-sight

Sj Sj
SkT

Sk
Sj

newT

newT

Ci-1

T

SkSj

T

Sj

Sk= ø

Figure 9. The oriented drilling process : (1) CCCi−1 can see TTT in section Sj, (2) expand the examined
direction in the vicinity of TTT until seeing TTTnew in section Sk(k > j), (3) update TTT by TTTnew, Sj by Sk and
repeat step 2 for the new TTT and Sj, (4) repeat step 3, (5) the expanding process is over and we do not find
any farther section Sk = ∅, and we then compare all the length of sight passing through the visible area
in Sj to obtain the direction corresponding to the longest length of sight, and (6) initialize the next correct
point of the shortest path CCCi as the intersection point between the correct direction and cross-section Si.

5. Computational Results

In this section, we will compare the efficiency of the proposed algorithm with Dijkstra’s
one. There are several criteria for this comparison result: the length of the obtained ESP, the
computation speed, the smoothness, and the position error of the solution. The experiments
were ran on a machine with an Intel Core i5-8400 CPU @ 2.80 GHz processor. It has a six-
core CPU and the available RAM was 16 GB. All algorithms were implemented in Matlab.
The code is available online at https://github.com/nguyengiathuongphai/ESP_Tubular.git
(accessed date: 18 Feburary 2022).

5.1. Computation Time

We firstly implemented them considering a tube with the centerline in 3D space
consisting of a 4 cm straight length and two curved segments belonging to two perpen-
dicular planes. The radii of both curves are 12 cm and their lengths are 16 cm and 20 cm,
respectively, as detailed in Figure 10. The inner diameter of the tube is 3 cm. We chose
the discretization step h = 2 mm (N = 199). Each meshed disk is made by dividing the

https://github.com/nguyengiathuongphai/ESP_Tubular.git
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cross-section into 25 concentric circles (Nρ = 25) whose circumference is divided into four
equal arcs (Nθ = 4).

L.P = 36.63 (mm), L.D = 37.24 (mm), L.E = 36.59 (mm)

T.P = 759 (ms), T.D = 4103 (ms)

Figure 10. Tubular space with two curved segments in space. By L.P, and T.P, we denote the path
length and the computation time for the solution obtained by the proposed method. Similarly, L.D,
and T.D for Dijkstra’s algorithm. The exact solution is determined by using Dijkstra’s method with
Nρ = 144 and Nθ = 64.

As shown in Figure 10, the proposed method enables obtaining a shorter and smoother
solution than Dijkstra’s method with the same mesh (a detailed analysis will be provided in
the next sub-section). Another advantage of the proposed algorithm compared to Dijkstra’s
method is the computation speed as a large number of unimportant vertices and arcs can
be ignored in the process (see Figure 10). As the time complexity of the proposed method
has a huge variation depending on the specific shape of the tubular space, the computation
time (instead of the theoretical time complexity) will be considered for the comparison
result. Table 1 shows how the computation times of the two methods depend on the number
of nodes in the meshed circular disks. As we can see, the computation time of Dijkstra’s
method will increase by a factor of 4 if M is doubled (M is the number of nodes in a
meshed disk). This is consistent with the time complexity O(|A|) of Dijkstra’s algorithm
(|A| = 2M + (N − 1)M2). For the proposed method, this increasing rate is less than two.

Table 1. Comparison result in computation time of the two methods with different meshes.

M = 100
Nρ = 25, Nθ = 4

T.P = 0.76, T.D = 4.10

M = 200
Nρ = 50, Nθ = 4 Nρ = 25, Nθ = 8

T.P = 0.96, T.D = 16.66 T.P = 1.05, T.D = 15.77

M = 400
Nρ = 100, Nθ = 4 Nρ = 25, Nθ = 16

T.P = 1.63, T.D = 64.67 T.P = 1.51, T.D = 60.19

M = 800
Nρ = 200, Nθ = 4 Nρ = 25, Nθ = 32

T.P = 3.03, T.D = 259.23 T.P = 2.01, T.D = 219.82
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5.2. Accuracy and Smoothness

In the following, we extend the comparison results between the two algorithms for different
types of tubular spaces as shown in Table 2. Depending on the properties of the centerline, we
have two main classes of the tubular spaces: in plane centerline (parabolic, elliptical, hyperbolic,
sinusoidal, and evolvent of a circle); and in space centerline (wave-shaped torus on a sphere,
helical, spiral, and complex shape). Each meshed disk is chosen with Nρ = 25 and Nθ = 4.
In all these cases, the proposed algorithm always gives shorter, smoother and faster results
than Dijkstra’s algorithm with the same mesh. Unlike conventional graph-based methods (e.g.,
Dijkstra’s searching algorithm) in which the shortest path is made up of the graph nodes, the
proposed method allows finding each correct point on the ESP by determining the intersection
point between the exact moving direction (line of sight) and the next cross-section. This
intersection point is not necessarily a node of the mesh and leads to a smoother and shorter
solution than that by Dijkstra’s algorithm. The smoothness of this path is important, especially
in mechanical applications when the derivatives of the path with respect to the arc length s of
the tube is required such as using the coupled Cosserat rod and string model [38] to find the
deformation of a flexible tendon drive robot in the case that the tendon locates freely inside the
tube [18].

Table 2. Compare the proposed method and Dijkstra’s method with many tubular surfaces.

1. Plane Parabolic Centerline 2. Plane Elliptical Centerline 3. Plane Hyperbolic Centerline

L.P = 27.22, L.D = 27.29, L.E = 27.21 (cm) L.P = 25.70, L.D = 25.74, L.E = 25.68 (cm) L.P = 27.97, L.D = 28.10, L.E = 27.96 (cm)
T.P = 0.68, T.D = 2.57 (s) T.P = 1.02, T.D = 2.65 (s) T.P = 0.73, T.D = 2.64 (s)

4. Plane Sinusoidal Centerline 5. Plane Evolvent of a Circle 6. Wave-Shaped Torus on a Sphere

L.P = 24.41, L.D = 24.53, L.E = 24.39 L.P = 21.92, L.D = 21.94, L.E = 21.91 L.P = 22.29, L.D = 25.12, L.E = 21.96
T.P = 1.36 (s), T.D = 2.66 T.P = 1.16 (s), T.D = 2.57 T.P = 1.26 (s), T.D = 2.74

7. Tubular Helical Surface 8. Tubular Spiral Surface 9. Complex Shape Tubular Surface

L.P = 20.05, L.D = 20.31, L.E = 20.01 L.P = 18.87, L.D = 19.02, L.E = 18.71 L.P = 110.96, L.D = 111.22, L.E = 110.92
T.P = 1.00 (s), T.D = 2.74 T.P = 1.17 (s), T.D = 2.88 T.P = 5.90 (s), T.D = 11.29
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In addition to the length and the smoothness of the obtained ESP, its location inside
the tube is also very important. For example, in the mechanical problem just mentioned
above, the tendon location is directly related to the deformation direction of the tube. Thus,
the position error of the obtained ESP to the exact solution needs to be investigated. We
consider the ESPs given by Dijkstra’s and the proposed algorithms to be a series of points
located on the cross-sections of the tube. Then, the position error of each point is the
distance between itself and the exact solution within the containing cross-section. Let εD

i
and εP

i be the position errors within cross-section Si of the solution by Dijkstra’s algorithm
and by the proposed method, respectively. In this test, we expect to consider the relative
errors instead of the absolute ones. As the obtained paths must be inside the tubular space,
to limit the relative errors by 100%, we compare the absolute position error to the inner
diameter of the tube d. The root mean square error (RMSE) and the maximum error (Emax)
of Dijkstra’s solution are given in Equations (5) and (6) (the same for the proposed method
just by replacing super index D by P):

RMSED =
1
d

√√√√ 1
N

N

∑
i=1

(
εD

i
)2 (5)

ED
max = min

i∈{1,...,N}

(
εD

i
d

)
(6)

Here, we do not consider the two ending cross-sections (S0 and SN+1) as the position
error is obviously zero at the source and the destination. As shown in Table 3, the proposed
method always provides smaller RMSE and Emax than those obtained by Dijkstra’s algo-
rithm for all of the tubes. Concretely, the average values among these tubes of RMSE and
of Emax for the proposed solution are, respectively, 0.319% and 1.427% and approximately
six times smaller than those given by Dijkstra’s algorithm (2.133% and 8.753%, respectively).
As the path obtained by Dijkstra’s method must pass through nodes of the weighted graph,
its position errors significantly depend on the meshing. These errors can be reduced if we
increase the granularity of the mesh, but it will also increase the computation time. For
the proposed method, the location of the obtained path is not forced to be the nodes of the
graph that leads to smaller position errors.

Table 3. Root mean square and maximum position errors of the ESP obtained by the two algorithm.
The tube number is as given in Table 2.

RMSE

Tube 1 2 3 4 5 6 7 8 9 Avg.

Dijkstra’s algorithm 0.506% 0.032% 1.922% 0.118% 0.007% 12.487% 1.655% 1.334% 1.140% 2.133%

Proposed algorithm 0.002% 0.002% 0.004% 0.009% 0.001% 1.003% 0.510% 0.368% 0.974% 0.319%

Maximum Error

Tube 1 2 3 4 5 6 7 8 9 Avg.

Dijkstra’s algorithm 4.343% 0.628% 11.812% 1.136% 0.226% 28.121% 8.556% 11.942% 12.017% 8.753%

Proposed algorithm 0.012% 0.016% 0.026% 0.105% 0.015% 4.774% 2.077% 2.039% 3.782% 1.427%

To extend the comparison results for different granularities of the meshed disks, Tube
6 (wave-shaped torus on a sphere) and Tube 7 (helical tubular surface) will be considered.
The mesh is modified using different Nρ and Nθ as shown in Table 4. In these tests, the
path length given by the proposed method are shorter than that proposed by Dijkstra’s
algorithm for most cases. As a consequence, the proposed method also provides solutions
with smaller position errors in comparison with Dijkstra’s algorithm. Even so, for the
mesh with high granularity (Nρ = 20, Nθ = 256), Dijkstra’s algorithm can give a more
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accurate result than that obtained by the proposed method but it requires a much longer
computation time. The accuracy of Dijkstra’s solution increases with the increase in Nρ

and Nθ while this is not always true with the proposed method. The reason is that a sparse
grid can effectively constrain the movement of the VP in the correct direction in some cases.
The proposed solution may become more wavy with a higher granular mesh. However,
the length of the obtained paths only fluctuate in a narrow range (±0.5% for Tube 6) and
(±0.1% for Tube 7). Eventually, when the number of nodes on the mesh is higher, the
increasing rate in the computation time of Dijkstra’s algorithm is superior to that of the
proposed method.

Table 4. Comparison results between the proposed algorithm and Dijkstra’s algorithm with different
granularities of the meshed cross-sections of the tube.

Nρ = 5 Nρ = 20

Nθ = 4 Nθ = 16 Nθ = 32 Nθ = 64 Nθ = 4 Nθ = 16 Nθ = 32 Nθ = 256

Tube 6

L.P (cm) 22.28 22.35 22.29 22.27 22.32 22.37 22.44 22.26
L.D (cm) 25.83 25.83 25.83 23.74 25.18 25.18 25.18 22.05
RMSEP (%) 1.05 1.34 0.77 0.71 1.13 1.70 1.72 0.89
RMSED (%) 13.58 13.58 13.58 2.90 12.00 12.00 12.00 0.30
T.P (s) 0.45 0.78 1.18 1.82 0.86 1.70 2.73 17.01
T.D (s) 0.16 1.54 5.70 22.00 1.66 21.38 82.90 5582.00

Tube 7

L.P (cm) 20.06 20.04 20.04 20.08 20.05 20.05 20.04 20.08
L.D (cm) 20.82 20.82 20.82 20.82 20.32 20.32 20.32 20.09
RMSEP (%) 0.62 0.14 0.30 0.73 0.55 0.17 0.20 0.59
RMSED (%) 2.92 2.92 2.92 2.92 1.61 1.61 1.61 0.06
T.P (s) 0.31 0.60 0.85 1.34 0.66 1.15 1.67 7.67
T.D (s) 0.15 1.52 5.58 21.82 1.63 21.89 84.34 5585.00

6. Discussion

In this section, the extended application scope of the proposed algorithm and the ability
to apply it as a reactive method for the navigation problem in unknown environments will
be discussed.

6.1. Extended Applications

We can extend the application scope of the proposed method for general tunnels with
convex and variable cross-sections (see Figure 11). Indeed, with a minor modification on
Remark 1 for points in P3, the correct direction is towards the (only) visible point of the
farthest visible cross-section instead of considering the longest length of sight, one can
confirm that the correctness of Remark 1 will still be preserved (see the Appendix A.2).

convex shape

Figure 11. Canal space with convex and variable cross-sections.

6.2. A Reactive Method

In this work, we used the same directed graph for Dijkstra’s algorithm and the pro-
posed algorithm for the aim of simplifying the validation and the comparison results. It
is important to note that the proposed method does not require knowledge of the entire
volume Ω to obtain a weighted graph before searching. In fact, the correct direction of the
particle can be determined based on the observation in front of it. While using Dijkstra’s
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algorithm, we cannot determine which path is the ESP until visiting all nodes and arcs of
the graph; since we need to store all possible paths during the operation, the proposed
method enables us to directly generate the motion decision during the movement there
by the ESP is gradually traced by the moving path of the VP. Thus, it can be applied as
a reactive method for robots that need to explore unknown tubular spaces such as lava
tubes on an astronomical object [39] or environments in the absence of GPS signals [40].
In practice, the proposed algorithm should be run together with a given safety boundary
constraint to prevent collision with inspection robots.

7. Conclusions

In this paper, we presented a novel algorithm for solving the ESP problem inside
tubular spaces based on its geometric properties. Computational results were obtained
for various types of tubular spaces. We demonstrated that the achieved efficiency of the
proposed algorithm is better than that of Dijkstra’s algorithm. Concretely, the proposed
method provided smoother and more precise results with a faster calculation speed than
one obtained by Dijkstra’s algorithm with the same grid. The strength of the proposed
method is also reflected in the fact that it can work without knowing the environment
in advance, which allows it to process as a reactive method. Even though the algorithm
was described for the tubular space, it is also strongly promising for more complex tunnel
spaces to which it can directly be applied with the aforementioned minor modification. A
limitation of this method is that it is only applicable to unbranched tubular spaces. In order
to apply this method for a branched tubular space, additional information will be required
to make decisions at the junctions of branches.

As the ESP may lie on the tubular surface, the requirement of using a collision-free
method together with the proposed algorithm has been left for future research. Our plans
for future work concern some applications such as the online trajectory generation of
navigation robots in unknown tunnels or determine the deformation of a tendon-driven
tube-like robot in medical applications, which are also included in our domain of interest.
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Appendix A

Appendix A.1. Proof of Lemma 2

By SX, we denote the cross-section of Ω that contains XXX. Let Ωm and Lm be the sub-
space of Ω limited between SX and S and its length along the centerline curve, respectively.
Under a discrete point of view, Ωm can be considered as a series of (K + 1) cross-sections
perpendicular to the centreline curve: SX = Sm

0 , . . . , Sm
K = S (K ∈ N+) with the discrete

step ∆h = L
K . Let σX(S) be the visible area of the cross-section S by XXX, we then have:

∀YYY ∈ σX(S), ∀i ∈ {0, . . . , K} ⇒ ∃aaai =
(

XYXYXY ∩ Sm
i

)
6= ∅
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Therefore, YYY is the perspective projection of aaai (∀i ∈ {0, . . . , K}) from the view point
XXX to the view plane S, hence:

σX(S) ⊂
K⋂

i=0

PS
X(S

m
i )

where PS
X
(
Sm

i
)

is the perspective projection of Sm
i from the view point XXX to the view plane

S. If K → ∞, or ∆h→ 0, then the problem becomes continuous:

σX(S) ⊂
∞⋂

i=0

PS
X(S

m
i ) (A1)

Inversely:

∀WWW ∈
∞⋂

i=0

PS
X(S

m
i )⇒

(
XWXWXW ∩ Sm

i

)
= bbbi 6= ∅, ∀i ∈ N (A2)

When ∆h→ 0, then we obtain:

XWXWXW =
∞⋃

i=0

bbbi ⊂ Ω

Indeed, if XWXWXW 6⊂ Ω, we can always find a value ∆h > 0 in order to have a cross-section
Sm

i so that Sm
i ∩XWXWXW = ∅ (conflict with (A2)). Consequently, WWW can be seen by XXX, then we

have:

WWW ∈ σX(S)⇒
∞⋂

i=0

PS
X(S

m
i ) ⊂ σX(S) (A3)

From (A1) and (A3), then:

σX(S) =
∞⋂

i=0

PS
X(S

o
i ) (A4)

As the cross-section of Ω is convex and the convexity is preserved under perspective
projection and intersection [41], then σX(S) is a convex region. (Q.E.D.).

Appendix A.2. Proof of Remark 1

We will prove the correctness of the proposed direction of the VP at each partition.

i. Case 1: XXX ∈ P1 (XXX can see QQQ)

As the line segment joining XXX and QQQ is the shortest path between them, the direction
of the ESP ṗpp(s) at XXX must be towards QQQ:

ii. Case 2: XXX ∈ P2 (XXX can see Send, but QQQ)

Let YYY ∈ σX(Send) be the set of visible points on the ending cross-section such that the
angle between XYXYXY and XXXQQQ is the smallest one. We define a cone surface (C0) with the apex
XXX and the generatrix makes an angle ŶXQYXQYXQ to the axis XXXQQQ, then YYY ∈ (σX(Send) ∩ C0) (see
Figure A1). As σX(Send) is convex, we can easily prove that the existence of YYY is unique,
moreover YYY ∈ (∂σX(Send) \ ∂Ω). Thus, XYXYXY must be tangent to ∂Ω at TTT. Let (α) be the
corresponding tangent plane, then we obtain that (α) is also the tangent plane of σX(Send)
(see the proof of Corollary 2 for a similar case).

As YYY is the tangent point between σX(Send) and (C0 ∩ Send) (these two convex sets
have only one common point YYY), (α) is also the tangent plane of (C0). Let III be the center of
the cross-section at TTT. As ITITIT ⊥ (α), ITITIT must intersect the axis XQXQXQ of (C0). Thus, X, T, I, YX, T, I, YX, T, I, Y,
and QQQ are coplanar. We denote this coplanar plane by (Pc).

Let WWW be the intersection between the ending cross-section plane β(Send) and ṗpp(sX).
Now, we have to prove that WWW ≡ YYY. Using Corollary 2, we obtain: WWW ∈ σX(Send). Let
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(C1) be the closed surface enclosed by σX(Send) and the set of line segments from XXX to
every point of ∂σX(Send). Thus, XXX can see every point in (C1). If WWW 6∈ ∂σX(Send) (that is,
WWW belongs to the inner zone of σX(Send)), then the ESP goes into the inner space of (C1)
with the direction ṗ̇ṗp(sX). As QQQ is outside (C1), the ESP must pass the boundary of (C1). We
denote HHH as the passing point. Since XXX can see HHH, the part of the ESP connecting XXX and HHH
is not the shortest path (as it is longer than XHXHXH). This leads to a contradiction with Lemma
1. Hence:

WWW ∈ ∂σX(Send) (A5)

In addition, if WWW 6≡ YYY, then WWW 6∈ (Pc). By using Corollary 1, we can confirm that the
particle will move far away from (Pc) so it cannot reach QQQ on (Pc). Thus, WWW ≡ YYY. (Q.E.D.)

X

σ (S
X

(α)

end
)

I

T
Y

Destination
(C )0

Figure A1. XXX can see the ending cross-section. By defining the cone surface (C0), we can prove that
Q is coplanar with X, I, YX, I, YX, I, Y.

iii. Case 3: XXX ∈ P3 (XXX cannot see Send)

As XXX cannot see Send, the farthest cross-section of the tube is S f which can be seen by
XXX. We will prove that XXX can see only one point in this cross-section. In S f , if there exist
two different visible points Y1Y1Y1 and Y2Y2Y2 by XXX, then XXX can see the midpoint YmYmYm of Y1Y2Y1Y2Y1Y2 (using
Lemma 2). As YmYmYm 6∈ ∂Ω, we infer that S f is not the farthest visible cross-section by XXX (XXX
can see farther with the line of sight through YmYmYm). Thus, there is only one visible point
YYY in S f that can be seen by XXX, and XYXYXY is the correct direction of the tendon according to
Corollary 2.

Moreover, we can demonstrate that XYXYXY is also the longest length of sight from XXX. One
can easily confirm that XYXYXY must be tangent to ∂Ω at a point TTT of the cross-section ST . Let
(α) be the corresponding tangent plane. Let Ωv be the space enclosed by ∂Ω, (α), and the
cross-section containing XXX as illustrated in Figure A2. Then, Ωv contains all the visible
points by XXX of Ω located behind the cross-section ST . The problem now is to prove that
XY is the longest length of sight in Ωv. As the tube does not overlap itself, we obtain:
XYXYXY ≥ TYTYTY ≥ 2R. Thus, one can confirm that Ωv is totally contained by the sphere (χ) center
XXX and the radius XYXYXY. We then have XY as the longest length of sight from XXX.

X

Y

T

(χ)

Sf

ST
Ωv

Figure A2. XXX cannot see the ending cross-section. It can only see one point YYY on the farthest visible
cross-section S f .

It is evident that every point on the ESP must belong to one of the three partitions
(P1: see QQQ; P2: see Send, but not see QQQ; and P3: not see Send) and as the correct direction is
unique for each position, if the VP follows the proposed correct direction throughout its
journey, its moving path will describe the ESP. (Q.E.D).
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